A NOTE ABOUT TWO PROPERTIES OF MATRIX RINGS

BY A. A. KLEIN

ABSTRACT

We show that there exists for each $m \ge 2$ a (non-commutative) integral domain R with a nilpotent matrix $C \in R_m$ whose order of nilpotency is greater than m, and any $A \in R_m$ with a right (or a left) inverse is invertible.

Following an example given in [2, p. 35] it is shown in [4] that a ring which satisfies the condition N_m : If $C \in R_m$ is nilpotent then $C^m = 0$, it also satisfies the condition I_m : If $A, B \in R_m$ and AB = 1 then BA = 1, which is denoted by III in [1]. The aim of this note is to show that ther exists an integral domain which satisfies I_m but does not satisfy N_m .

First we prove the following:

LEMMA 1. Let U be a ring with 1 and V an ideal in U. Let $a_i, b_i \in U$, $i = 0, 1, 2, \dots$, and define for $r = 0, 1, 2, \dots$

(1)
$$c_r = \sum_{i=0}^r a_i b_{r-i}, \quad d_r = \sum_{i=0}^r b_i a_{r-i}.$$

If $a_0b_0 = b_0a_0 = 1$ and $c_r \in V$ for r > 0, then $d_r \in V$ for r > 0.

Proof. By induction on r. Assume $d_i \in V$ for $0 < i \leq r$ and proceed to prove $d_{r+1} \in V$. For r = 0 the proof will show that $d_1 \in V$. Consider the following series in the ring of formal power series U[[x]]:

$$f = \sum_{i=0}^{\infty} a_i x^i, \ g = \sum_{i=0}^{\infty} b_i x^i, \ h = \sum_{i=0}^{\infty} c_i x^i, \ k = \sum_{i=0}^{\infty} d_i x^i.$$

By (1) it follows that h = fg and k = gf, hence we have fk = hf and the coefficient of x^{r+1} in both sides of this equation is

Received January 4, 1970.

Vol. 8, 1970

$$\sum_{i=0}^{r+1} a_i d_{r+1-i} = \sum_{i=0}^{r+1} c_{r+1-i} a_i.$$

But $c_0 = a_0 b_0 = 1$ and $d_0 = b_0 a_0 = 1$, hence $a_{r+1} d_0 = a_{r+1} = c_0 a_{r+1}$, and we obtain $a_0 d_{r+1} = \sum_{i=0}^{r+1} c_{r+1-i} a_i - \sum_{i=1}^{r+1} a_i d_{r+1-i} \in V$ since $c_1, \dots, c_{r+1}, d_1, \dots, d_r \in V$. It follows that $d_{r+1} = b_0 a_0 d_{r+1} \in V$.

Now let us consider the ring R = P/T constructed in [3] with $k \ge m \ge 2$ which is an integral domain. We have:

THEOREM 2. R satisfies I_l for each $l \ge 1$.

Proof. Since $R_i \simeq P_i/T_i$ it suffices to show that if $A, B \in P_i$ and $AB - 1 \in T_i$ then $BA - 1 \in T_i$. We write A, B as sums of homogeneous matrices (= matrices all of whose entries are of the same degree or 0): $A = \sum_{i=0}^{\infty} A_i$, $B = \sum_{i=0}^{\infty} B_i$; A_i, B_i are homogeneous of degree *i*. Denote by C_r and D_r the homogeneous components of AB and BA respectively, $r = 0, 1, 2, \cdots$. Then we have $AB = \sum_{r=0}^{\infty} C_r$, $BA = \sum_{r=0}^{\infty} D_r$ and

$$C_r = \sum_{i=0}^r A_i B_{r-i}, \ D_r = \sum_{i=0}^r B_i A_{r-i}.$$

Now T is a homogeneous ideal [3, lemma 4] and hence it follows that T_i is a homogeneous ideal in P_i . From $AB - 1 \in T_i$ it follows $C_0 - 1 \in T_i$ and $C_r \in T_i$ for $r = 1, 2, \cdots$. Since T_i does not contain non-zero homogeneous matrices of zero degree we have $C_0 = 1$ and hence $A_0B_0 = 1$. But A_0, B_0 are matrices over a field, hence $D_0 = B_0A_0 = 1$. Thus, we may apply the lemma for P_i , T_i , A_i , B_i , C_r , D_r replacing U, V, a_i , b_i , c_r , d_r respectively, and we obtain $D_r \in T_i$ for $r = 1, 2, \cdots$. Hence $BA - 1 = \sum_{r=1}^{\infty} D_r \in T_i$ and this proves the theorem.

Note that the same proof shows that the ring \mathscr{R} constructed in [3] also satisfies I_i and the same is true for each ring which is a homomorphic image of a subring of a formal power series ring, in any number of noncommutative indeterminates over a field, with homogeneous kernel.

Now, we restrict the conditions N_m and I_m to integral domains and identify each condition with the class of rings in which it holds. Since N_m implies I_m and the integral domain in the theorem does not satisfy N_m [3, Th. 1] we obtain:

THEOREM 3. For each $m \ge 2$, $N_m \stackrel{\frown}{=} I_m$ and $\bigcap_{i=1}^{\infty} N_i \stackrel{\frown}{=} \bigcap_{i=1}^{\infty} I_i$.

Note that since in an integral domain an element with a right inverse is invertible, we have $N_1 = I_1$. If we admit zero-divisors it is easy to obtain for each $m \ge 1$ a ring which satisfies I_m and does not satisfy N_m . Indeed, let F be a field and take $R = F_n$ with n > m. Clearly in R_m a matrix with a right inverse is invertible but R and hence also R_m contain nilpotent elements whose order of nilpotency is n > m.

References

1. P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215-228.

2. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R. I., 1964.

3. A. A. Klein, Rings nonembeddable in fields with multiplicative semigroups embeddable in groups, J. Algebra 7 (1967), 100-125.

4. A. A. Klein, Necessary conditions for embedding rings into fields, Trans. Amer. Math. Soc. 137 (1969), 141-151.

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY